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The solution of elliptic and vorticity equations on a sphere is studied using dou-
ble Fourier series as orthogonal basis functions. The basis functions incorporate
sine series weighted by cosine latitude as meridional basis functions for even zonal
wavenumbers other than zero to meet the pole condition. As to the solution of Pois-
son’s equation, it is found that the new method gives improved accuracy compared
to the method of Yee (Mon. Weather Rev. 109, 501, 1981) due to the absence of con-
straints imposed on spectral coefficients with the operation number being slightly
increased. The new method is applied to the vorticity equation along with the use
of Fourier and spherical harmonics filters, and its accuracy is tested for the rotated
Rossby–Haurwitz wave. It is shown that the basis functions adopted here provide
high accuracy for all tests used. Numerical integration without spherical harmon-
ics filters indicates that they are necessary for stable and accurate time integration.
Comparison with the spherical harmonics model reveals that the present method is
more accurate by a factor of order 11

2 for the test case. Further application to the
advection equation is carried out. The error measure for the strong advection of the
cosine bell with various rotation angles indicates that the present method is capable
of producing accurate and stable calculations without the pole problem, suggesting
that it could be applied to the numerical weather prediction model, including shallow
water equations, without difficulty. Extension to the shallow water equations with
accuracy tests as in Williamsonet al. (J. Comput. Phys. 102, 211, 1992) will be
given in the future. Additional time could be saved by introducing the reduced grids
near poles in the present method, besides the advantage of applying FFT to both
longitudinal and latitudinal directions. c© 2000 Academic Press
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1. INTRODUCTION

The use of double Fourier series in solving partial differential equations (PDEs) is an
attractive method because in addition to its high accuracy, a fast algorithm is available when
transforming from the wave to the grid domain and vice versa. Double Fourier series in
spectral or pseudospectral method for the global atmospheric models has emerged as an
alternative to the spherical harmonics method in an attempt to reduce the complexity and
the computational cost that is primarily caused by the use of Legendre functions [2, 4, 17,
21, 23]. Nevertheless, most global atmospheric models use the spherical-harmonics-based
spectral method [9, 15, 27]. Reasons for this may be found in [5]. Recently, a stable and
accurate pseudospectral method in which double Fourier series are used was developed by
[24] based on the method of [17].

When double Fourier series are incorporated as basis functions in spectral methods
for the solution of PDEs in a spherical coordinate system, one must be careful that the
boundary condition at the poles is satisfied. Such a condition, however, is not necessary
for the pseudospectral method as used by Merilees [17] and Spotzet al. [24] because 2π -
periodicity is used on great circle meridian. One way to overcome this is to select basis
functions that satisfy the pole condition [23]. Another way is to impose a constraint on
spectral coefficients when each basis function does not satisfy the pole condition [2, 4, 21].
Since spherical harmonics are represented as proper combinations of half-ranged cosine or
sine series, one naturally tries to use double Fourier series expansions that are appropriate
for the representation of spherical harmonics [4, 7, 8, 21, 26]. Such basis functions do not
necessarily satisfy the pole condition.

The Poisson equation on a spherical surface appears in a variety of problems. A number
of numerical methods for its solution have been published [1, 6, 18, 21, 25, 31, 32]. It often
serves as an important method of testing whether a certain kind of basis function can be
adopted in a spectral method for PDEs. Since spherical harmonics are eigenfunctions of the
Laplacian operator, the most accurate solution of the Poisson equation may be obtained by
the use of these functions even for higher order equations such as the biharmonic equation.
However, such a solution requires larger computations as the resolution increases.

Yee [32] presented the solution of the Poisson equation using double Fourier series on
a spherical surface. The basis functions were sine (cosine) series for odd (even) zonal
wavenumbers, which were used originally by Orszag [21], though not in explicit expres-
sions,

gm(φ) =
∞∑

n=0

gn,m{(1− s) cosnφ + ssinnφ)},

whereφ is latitude+π/2 so that the zero ofφ is taken at the south pole,gm is the Fourier
transform ofg(λ, φ), ands= 0(s= 1) for even (odd) zonal wavenumberm, respectively
(in fact, the colatitude was used in [32] instead ofφ). Use of the cosine function makes it
necessary to impose a constraint on spectral coefficients for even zonal wavenumbers except
zero because it does not vanish at the poles. In principle, the basis functions above cannot
be applied to differential equations involving advection terms on a shpere for two reasons:
First, the singularity from the factor (1/ sin φ) is unavoidable or may be treated inefficiently.
Second, any spectral components representing a physical quantity should be determined by
the governing equation in use, but not by the necessity of the pole condition itself.
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An example of the application of double Fourier series to an advection equation on a
sphere is found in [2], where interior grids are used to avoid singularity over the poles and
the meridional basis functions are defined over a great circle passing over the poles. Since
the basis functions do not satisfy the pole condition, it is required that the sum of odd (or
even) coefficients for the meridional function should vanish. However, it is questionable
whether this requirement must be fulfilled during time integration.

In this study, we present a double Fourier series method for the solution of simple elliptic
equations, the vorticity and advection equations, on a sphere based on interior grids in an
attempt to provide the first step for the application to a numerical weather prediction model
including the shallow water equations. The new method is similar to Yee’s method [32] in
that double Fourier series with half-ranged sine or cosine series for meridional direction
are used, but the basis functions are different from Yee’s. In previous studies including
[32], double Fourier expansion on a sphere (half-ranged functions in meridional direction)
incorporates explicitly cosine series for even zonal wavenumbers [4, 21]. We also use a
cosine series, but in implicit expression. That is, for even zonal wavenumbers except zero
we expand dependent variables with sine series weighted by cosine latitude, which makes
it unnecessary to impose a constraint on spectral coefficients in order to satisfy the pole
condition.

In the next section the solution of elliptic equations including the Poisson equation on a
sphere using double Fourier series is described. Section 3 shows the application of the new
method to the vorticity and advection equations with test cases incorporating the Rossby–
Haurwitz wave and the advection of a cosine bell, respectively. Comparisons with other
methods, as in [15, 28], are also presented. Discussion and conclusions are given in the final
section.

2. POISSON EQUATION ON A SPHERE

2.1. Basis Functions and Poisson Equation

The Poisson equation over a sphere with unit radius is written as

1

sinφ

∂

∂φ
sinφ

∂u

∂φ
+ 1

sin2 φ

∂2u

∂λ2
= g(λ, φ), (2-1)

whereλ is longitude andφ is defined as in Section 1 (see also Boer and Steinberg [2]);
g(λ, φ) is the forcing function given. As a usual procedure, we expand the field variables
with a Fourier series in longitude with a truncationM , e.g.,

u(λ, φ) =
M∑

m=−M

um(φ)e
imλ, (2-2)

wherei = √−1, um(φ) is the complex Fourier coefficient given by

um(φ) = 1

K

K−1∑
k=0

u(λk, φ)e
−imλk , (2-3)
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andλk= 2πk/K andK is the number of data points along a latitude circle. To make the
transforms in (2-2) and (2-3) complete, we set 2M = K . Then, we obtain

1

sinφ

d

dφ
sinφ

d

dφ
um(φ)− m2

sin2 φ
um(φ) = gm(φ), (2-4)

wheregm(φ) is the complex Fourier coefficient ofg(λ, φ).
Without loss of generality, the boundary conditions at the poles for the Fourier coefficients

of any analytic true scalar functions, e.g.,gm(φ), can be imposed:

gm(φ) =
{

finite, m= 0

0, m 6= 0
(2-5a,b,c,d)

d

dφ
gm(φ) =

{
finite, oddm

0, evenm.

These are classified as the essential boundary conditions for the Laplacian operator [4]. The
basis functions for spectral representation in the meridional direction should satisfy these
conditions. It is clear that the use of either sine or cosine series alone as basis functions
does not meet the boundary conditions above. If the basis functions do not satisfy the pole
conditions, additional constraints are required [2, 21, 31, 32]. In this study we approximate
gm(φ) (andum(φ)) with the truncated sine or cosine functions

g0(φ) =
J−1∑
n=0

gn,0 cosnφ, m= 0

gm(φ) =
J∑

n=1

gn,m sinnφ, oddm (2-6a,b,c)

gm(φ) =
J∑

n=1

gn,m sinl φ sinnφ, evenm (6=0).

Any positive integer ofl will be appropriate for the pole conditions written above. With
l ≥ 2, the cosine series can also satisfy the pole condition. However, since with largel the
round-off error becomes large for the inverse transform [11], we select the minimum value
of l , i.e., l = 1. Equations (2-6a) and (2-6b) are identical to those used in previous studies
[4, 21, 32]. Explicit use of the cosine series for evenm requires the imposition of a condition
that the sum of expansion coefficients should vanish [4, 21, 32]. With the basis functions
in (2-6), however, this is not the case.

We assume that the field variables are given on interior grids in the latitudinal direction,

gm(φ) = gm(φ j )
(2-7a,b)

φ j = π( j + 0.5)/J, j = 0, 1, 2, . . . , J − 1,

whereJ is the total number of grid points between poles. With this grid location we do not
have to deal directly with the grid points on the poles, and thus, we can avoid the singularity
arising from dividing by sinφ in the case of evenm (6=0), which is needed to take advantage
of the fast sine transform. Evaluation of any terms (e.g., the advection terms, as will be seen
in the next section) that include the operation of 1/sin φ is also possible over the sphere.
The spectral coefficientsgn,m are calculated by either sine or cosine transforms on interior
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grids with a fast algorithm found in Presset al. [22],

gn,m = b

J

J−1∑
j=0

gm(φ j ) cos(nφ j /J), m= 0,

gn,m = c

J

J−1∑
j=0

gm(φ j ) sin(nφ j /J), oddm, (2-8a,b,c)

gn,m = c

J

J−1∑
j=0

(gm(φ j )/ sinφ j ) sin(nφ j /J), evenm (6=0),

whereb= 1 for n= 0 andb= 2 for n> 0, c= 1 for n= J andc= 2 for n< J. The proce-
dure for obtaining the solution of (2-4) is basically similar to that of Yee [32]. However, some
differences are found between the two procedures; these arise partly from the difference in
basis functions and partly from the choice of interior grids.

2.2. Spectral Representation for Oddm

Multiplication by sin2 φ and substitution of the Fourier expansion (2-6b) into (2-4) yields

(n− 1)(n− 2)

4
un−2,m − n2+ 2m2

2
un,m + (n+ 1)(n+ 2)

4
un+2,m

= −1

4
gn−2,m + 1

2
gn,m − 1

4
gn+2,m, (2-9)

wheren= 2, 4, . . . , J for evenn, andn= 1, 3, . . . , J− 1 for oddn. Discarding the ex-
pansion coefficients with indices higher than the truncation limit, Eq. (2-9) constitutes two
matrix equations for eachm, with even or oddn, separately,

Du = Ag, (2-10)

whereD andA are square matrices ofJ/2× J/2 with tridiagonal components only whose
values are calculated by the coefficients in (2-9).u andg are column vectors whose compo-
nents are the expansion coefficients ofum(φ) andgm(φ). As to a particular index, it holds
that

A1,1 = 3/4 for oddn, (2-11)

whereg−1,m = −g1,m was used due to the 2π -periodicity ofgm(φ).

2.3. Spectral Representation for Evenm (6=0)

Equation (2-4) is rewritten with transformed variablesgs
m andus

m(g
s
m ≡ gm/ sinφ, us

m ≡
um/ sinφ) as (

us
m

)′′
sin2 φ + 3

2

(
us

m

)′
sin 2φ + us

m cos 2φ = gs
m sin2 φ, (2-12)

where the prime denotes differentiation with respect toφ. Substitution of Eq. (2-8c) yields
algebraic equations similar to (2-9),

n(n− 1)

4
un−2,m − n2+ 2m2

2
un,m + n(n+ 1)

4
un+2,m = −1

4
gn−2,m + 1

2
gn,m − 1

4
gn+2,m,

(2-13)
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wheren= 1, 3, . . . , J − 1 (n= 2, 4, . . . , J) for odd (even)n. Again, this can be rewritten
in matrix equations such as (2-10). For the same reason stated above, the matrix component
for a particular index is given as

A1,1 = 3/4 for oddn.

2.4. Spectral Representation form= 0

Linear algebraic equations exactly the same as (2-9) can be obtained with the use of
expansion coefficients, but this timen= 0, 2, . . . , J−2 for evenn, andn= 1, 3, . . . , J−1
for oddn. It is trivial from (2-9) to show thatD1,1= D2,1= 0 for evenn. Matrix components
that should not follow the coefficients in (2-9) are

A1,1 = 1/4 for oddn

A2,1 = −1/2 for evenn,

whereg−1,0= g1,0 was used for the first equation, and the second identity comes from

g0(φ) sin2 φ ≡ Z0(φ) =
J−1∑
n=0

gn,0 cosnφ
1− cos 2φ

2

∴ Z2,0 = −1

2
g0,0+ 1

2
g2,0− 1

4
g4,0.

From direct substitution of (2-6a) into (2-4) it is clear that we must discardg−2,0 andu−2,0

in (2-9) so that we haveA1,2=−1/4 andD1,2= 1/2.

2.5. Tests of the Method

To get the solution ofu(λk, φ j ) from given g(λk, φ j ), we may follow the procedure
shown in Yee [32]. First we obtain the spectral components of the forcing functiongm(φ j )

by Fourier transforms in longitude. Prior to the Fourier transform in latitude, a variable
transform such asgm(φ j )/ sinφ j is carried out, and then the spectral coefficientsgn,m are
calculated. We next solve the matrix equations as in (2-10): The right-hand side is first
calculated to get a column vector, i.e.,Z= Ag. Finally the tridiagonal matrix equation
Du=Z is solved. Since the matrix elementsD1,1= D2,1= 0 for m= 0 and evenn, u0,0

may have an arbitrary constant. The tridiagonal systems are calculated very efficiently
by prehandling the matrices just once to facilitate backward substitution in a Gaussian
elimination procedure. In our method an extra procedure that is not found in Yee [32]
is needed to getgm(φ j )/ sinφ j for evenm (6=0), which occurs twice. This requires only
2× J×M operations, which is just a small percentage of the total number of operations
involved in the entire procedure. In test calculations, we selectJ to be an integer power
of 2 to take full advantage of the FFT algorithm, and determineK = 2J giving the same
resolution in longitude and latitude. Referring to Yee [32], we see that the total number of
operations needed to getu(λk, φ j ) from giveng(λk, φ j ) on regular grids (i.e., not interior
grids) is 12J2(1+ log2 J)with this grid number. Therefore ifJ= 128 is given, the number
of operations in the new method exceeds that in Yee [32] by about 2%.
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To test the accuracy of the new method and to give a direct comparison with the previous
study, we introduce a function whose analytic solution is known,

g(λ, φ) = ga + gb,

ga =
{
(m+ 1)(m+ 2) cosφ sinm φ cosm(λ− dm) for m> 0

2 cosφ for m= 0 (2-14)

gb =
{

m(m+ 1) sinm φ cosm(λ− em) for m> 0

−2(1+ 3 cos 2φ) for m= 0,

wheredm andem are random phases ranging from 0 to 2π . The exact solution for this is

u(λ, φ) = ua + ub,

ua =
{

cosφ sinm φ cosm(λ− dm) for m> 0

−cosφ for m= 0 (2-15)

ub =
{

sinm φ cosm(λ− em) for m> 0

+cos 2φ for m= 0.

The functionga (gb) is antisymmetric (symmetric) about the equator, denoting the first anti-
symmetric (symmetric) mode of associated Legendre function with the zonal wavenumber
m. To see the dependence of the accuracy of the calculations on spatial resolution,J is given
as 16, 32, 64, and 128, which correspond to the grid numbers 32× 16, 64× 32, 128× 64,
and 256× 128, respectively.

In the computation all the variables were set to be in double precision for which floating
points of 15 digits were available (DIGITAL FORTRAN 90 was used on DIGITAL UNIX
Alpha systems). For a direct comparison with the new method, we also carried out the same
computation using Yee’s method. As a measure of accuracy we calculated the normalized
L2 error E over the globe defined by

E2 =
∑

k

∑
j

(
uk, j − uA

k, j

)2∑
k

∑
j

(
uA

k, j

)2 , (2-16)

whereuk, j anduA
k, j denote the calculated and analytic solutions on grid points. In Fig. 1

we show the result log10 E for various resolutions, where all calculations were repeated
30 times with different sets of random phases,dm andem, and averaged. It is noted that
the magnitude of error exhibits a fluctuation with a zonal wavenumber whose amplitude
reaches approximately one order. At fixed resolution andm the error remains on the same
order for both the present (denoted by M16, M32, M64, and M128) and Yee’s method (Y16,
Y32, Y64, and Y128). As it should be, there exist no significant differences in error for odd
m because the basis functions are the same. As a whole, however, the present method is
more accurate than Yee’s method for evenm, typically by a factor of several times, in the
case of high resolutions (128× 64 and 256× 128 grids). This difference is attributed to the
fact the basis functions as in (2-6c) satisfy the pole condition (2-5d) and thus do not need
the constraint imposed on spectral coefficients used in Yee’s method. For both methods,
accuracy increases at fixedm in direct relation to resolution, except for low wavenumbers,
for which accuracy slowly decreases with increased resolution.
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FIG. 1. Variation of log10 E with zonal wavenumbers for various resolutions. Dashed (solid) line denotes the
result of Yee’s method (new method).

2.6. Extension to Simple Elliptic Equations

It may be possible to extend the present method to the solution of other simple types
of elliptic equations on a sphere. One such equation is the Helmholtz equation, which
frequently occurs in a variety of problems:

∇2u− εu = g(λ, φ). (2-17)

With ε= 0, Eq. (2-17) becomes the same as Eq. (2-1). In this case the global integral of the
forcing function does not necessarily vanish. With some manipulation, Eq. (2-17) is written
as the matrix equation

Fu = Ag, F = D − εA. (2-18a,b)

The same procedure as stated above can be applied to the solution of the column vectoru.
Unlike in Eq. (2-10),u0,0 is determined uniquely in the case ofε 6= 0.

A second example is the biharmonic equations [6], whose general form may be written
as

(∇2− ε)∇2u = g(λ, φ). (2-19)

This can be solved with ease if we introduce an intermediate variablew=∇2u. It should
be remembered that integration of the forcing function over the globe vanishes for this
problem. As noted by Dennis and Quartapelle [6], the accuracy of the solution is subject
to the magnitude ofε. To investigate the dependence of the accuracy onε for the new
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TABLE I

Normalized Error for Biharmonic

Equation of Helmholtz–Poisson Type

with m= 32 (K× J = 128× 64)

log10 ε E

4 0.259986E−12
3 0.385253E−12
2 0.219036E−11
1 0.179361E−10
0 0.764823E−10
−1 0.108322E−09
−2 0.106658E−09
−3 0.944021E−10

method,ε is set to vary over a range of several orders. For the evaluation of accuracy,
the forcing function in Eq. (2-19) is given to satisfy Eq. (2-19) whenu is given as in
Eq. (2-15). The results withK × J= 128× 64 andm= 32 are summarized in Table I. Note
that the accuracy does not change significantly untilε increases toO(1), but increases
sharply in the interval ofε≈O(101)–O(103). That is, as the relative magnitude of the
fourth order term becomes more important, accuracy decreases. In fluid dynamics including
numerical weather prediction models [14], fourth order Helmholtz–Poisson-type equations
(i.e., Eq. (2-19)) frequently appear. In such problems, the parameterε is generally very large
(or the second order term is relatively important) so that the degradation of accuracy may not
be a serious problem. The accuracy remains almost the same as that for the Poisson equation.

Until now our interest has been focused on the solution of simple elliptic equations such
as Poisson, Helmholtz, and biharmonic equations when the forcing function is known. In
various problems the solution of the forcing function of the examples shown above, i.e., the
result of operations of the Laplacian operator, is needed. First consider obtainingg(λ, φ)
from u(λ, φ) in Eq. (2-1). For this purpose the left-hand side of Eq. (2-10) is first calculated
using the spectral componentsun,m to get a column vectorZ(=Du), andAg=Z is solved
for column vectorg.

Harmonic equations of orders higher than biharmonic are commonly found as a viscosity
term in numerical models with spectral method [16], e.g.,∇6u,∇8u. These equations
are also easily calculated by introducing an intermediate variable to yield a Poisson-type
equation. Note that just one variable transform such asum(φ j )/ sinφ j is required for the
evaluation of the fourth order equations as well as even higher order equations when we
want to obtain spectral coefficients of these from givenu(λ, φ).

3. VORTICITY EQUATION AND SPECTRAL REPRESENTATION

3.1. Model Equation and Spectral Forms

The nondivergent barotropic vorticity equation on a sphere scaled by the radiusa and the
inverse of rotation rateÄ−1 of the earth is written

∂ζ

∂t
= − U

sin2 φ

∂η

∂λ
− V

sinφ

∂η

∂φ
, (3-1)
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with the definitions of the variables as

η = ζ + f,

ζ = ∇2ψ,
(3-2a,b,c,d)

U ≡ u sinφ = −sinφ
∂ψ

∂φ
,

V ≡ v sinφ = ∂ψ

∂λ
,

where f is the Coriolis parameter andu andv represent the zonal and meridional veloci-
ties, respectively. Equation (3-1) contains one prognostic variable,ζ , and three diagnostic
variables,ψ,U, andV , that can be determined directly from the vorticity. We represent
the vorticity field as the sum of basis functions with wavenumber truncationsM andN for
zonal and meridional directions, respectively (one more meridional component is included
in zonal mean state):

ζ(λ, φ, t) =
M∑

m=−M

ζm(φ, t)e
imλ

(3-3a,b,c,d)

ζm(φ, t) =


∑N

n=0 ζn,m(t) cosnφ for m= 0,∑N
n=1 ζn,m(t) sinnφ for oddm,∑N
n=1 ζn,m(t) sinφ sinnφ for evenm (6=0).

One must be careful in applying the parity function sinφ and/or differentiation with
respect toφ to a true scalar function, sayψ(λ, φ). Only certain combinations of differential
operators and parity functions are allowed to avoid the Gibbs phenomenon at the poles, of
which some examples are

∂qψ

∂φ p sinpφ; p+ q = 0,±2, . . . , and q = 1, 2, . . . ,

ψ sinp φ; p = ±2,±4, . . . .
(3-4)

Thus the use ofU andV instead ofu andv, respectively, is for more reasons than to deal
with simpler forms. Further, all terms included in (3-1) may be classified as one of these
forms.

The spectral componentsζn,m are obtained by half-ranged cosine or sine transforms,
which can be written in integral forms (see Eq. (2-8) for discrete forms)

ζn,m(t) =


b
π

∫ π
0 ζm(φ, t) cosnφ dφ for m= 0

2
π

∫ π
0 ζm(φ, t) sinnφ dφ for oddm

2
π

∫ π
0 {ζm(φ, t)/ sinφ} sinnφ dφ for evenm (6=0)

(3-5)

with b= 1 forn= 0 andb= 2 forn> 0. The spectral components for the stream function are
found by solving tridiagonal matrix equations as described in Section 2. Let zonal Fourier
components ofU (λ, φ, t) andψ(λ, φ, t) beUm(φ, t) andψm(φ, t), respectively; then, the
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spectral form of the velocities is

Un,m =
{

n{ψn+1,m − ψn−1,m}/2 for evenm 6= 0

{(n+ 1)ψn+1,m − (n− 1)ψn−1,m}/2 for others (3-6a,b,c)

Vn,m = imψn,m,

where

U s
m ≡ Um/ sinφ = −sinφ

∂

∂φ
ψs

m − ψs
m cosφ

(3-7)(
ψs

m ≡ ψm/ sinφ
)

is used for evenm (6=0). In an analogous manner, we may relate the spectral form of
ηλ (≡ ∂η

∂λ
) and ηφ (≡sinφ ∂η

∂φ
) to that of η. We must keep the meridional truncation for

Un,m and (ηφ)n,m one level above that for the stream function and absolute vorticityη,
respectively. The spectral components of nonlinear terms are evaluated by the transform
method [2, 3, 20]. We get grid-point values ofU,V, ηλ, andηφ by inverse transform and
calculate the nonlinear products such asUηλ/ sin2 φ andVηφ/ sin2 φ, finally transforming
them into spectral componentsXn,m andYn,m, respectively. Note that onlyO(M2 log2 K )
operations are needed for each transform due to the availability of FFT, whileO(M N2) are
needed for the spectral harmonics model [3, 20]. Then, the spectral form of the vorticity
equation (3-1) is written as

d

dt
ζn,m = −Xn,m − Yn,m. (3-8)

The spectral equation does not require a necessary condition for the spectral components
used in [2] because the basis functions satisfy the pole condition. The basis functions in
(3-3) make the spectral representation more accurate and simpler than for any other Fourier
method ever used.

The integration of a function over the sphere may be derived in the spectral form (cf.
Boer and Steinberg [2]). Let [g] denote the global average of a functiong(λ, φ):

[g] ≡ 1

4π

∫ π

0

∫ 2π

0
g(λ, φ) sinφ dλ dφ. (3-9)

Expansion ofg(λ, φ) with basis functions yields

[g] = 1

2

∫ π

0

[
N∑

n=0

gn,0 cosnφ sinφ

]
dφ

=
N/2∑
n=0

g2n,0

1− (2n)2
, (3-10)

wheregn,m are the spectral coefficients. Integration of nonlinear products such as enstrophy
and kinetic energy may be done by the transform method: Nonlinear products are evaluated
on grid points and the zonal component is transformed into the spectral domain to use
(3-10). Although many more operations are needed than this, nonlinear products can also
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be calculated directly from spectral components,

[gq] =
∑

m odd

∑
n

∑
n′

1

2
(gn,mq∗n,m + c.c.)So(n, n

′)+
∑

n

∑
n′

1

2
(gn,oq∗n,o + c.c.)Sw(n, n

′)

+
∑

m even
(6=0)

∑
n

∑
n′

1

2
(gn,mq∗n,m + c.c.)

{
1

2
So(n, n

′)+ Se(n, n
′)
}
,

where the asterisk and c.c. mean the complex conjugate and

So(n, n
′) =

{
n

n2− (n′ − 1)2
− n

n2− (n′ + 1)2

}
Sw(n, n

′) = 1

2

{
n′ + 1

(n′ + 1)2− n2
− n′ − 1

(n′ − 1)2− n2

}
Se(n, n

′) = 1

4

{
n′

n′2− (n− 1)2
− n′

n′2− (n+ 1)2

}
− 1

4

{
n

n2− (n′ − 3)2
− n

n2− (n′ + 3)2

}
with n± n′ = even.

Since from (3-1) the global integral of the vorticity is conserved over time, the spectralized
equations should also satisfy this conservation property. Equation (3-8), however, does not
explicitly show the conservation of the vorticity. Nevertheless, the vorticity is conserved to
a very good approximation during time integration, as will be shown below. On the other
hand, if Eq. (3-1) is written in flux form, the corresponding spectral equations explicitly
show the conservation of the vorticity, which is illustrated in the Appendix. We found that
the spectral form in (3-8) gives more accurate results for the test than does that in (A-4).

3.2. Truncation and Fourier Filter

Given the zonal and meridional truncationM andN, the number of grid points in longitude
(K ) and latitude(J) should be determined sufficient to prevent the aliasing error:

K ≥ 3M + 1, J ≥ (3N + 1)/2. (3-11a,b)

In this problem, we setM = N (as will be seen later,N must be not greater thanM) and
choose the total grid points to satisfy (see Table II for resolutions and number of grid points)

K = 4M, J = 2N. (3-12)

The transform grid points are located on the even positions in longitude, but along the

TABLE II

Grid Numbers for Various Resolution

K J M N

M16 64 32 16 16
M32 128 64 32 32
M64 256 128 64 64

Note. K(J) is total grids in the zonal (meridional) di-
rection, andM(N) is the maximum zonal (meridional)
wavenumber.
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interior grid in latitude as in Section 2, which facilitates the meridional transform of any
function including the(1/sinφ) factor.

When spherical coordinates are used as in (3-1), a severe limitation on the size of the
time step arises from the decrease of zonal grid size as the poles are approached. The
zonal resolution increases with latitude by the factor(1/sinφ); therefore the resolution near
the poles is almostM times better than that at the equator. This inefficiency and severe
difference in resolution can be overcome by discarding higher zonal wavenumbers near the
poles [2, 12, 17, 24]. There are various ways to accomplish this. In this study, we restrict
the largest zonal wavenumber retained to be

min(Mc,M), Mc = 6+ (M − 6) sinφ. (3-13)

This is done at every time step. With this filtering at least six zonal components are retained
at the grid points nearest to the poles; correspondingly we have a zonal resolution at the poles
approximately six times better than that at the equator. If the equal resolutions are provided
at the poles and the equatorial region(Mc=M sinφ), almost all of the Rossby–Haurwitz
waves may be wrongly represented by making the amplitude zero near poles.

In addition to the applicability of FFT for both longitudinal and latitudinal directions,
this model has the important advantage that the reduction of zonal grids at high latitudes
is also possible as in the spherical-harmonics-based spectral model [12], which cannot be
realized in the pseudospectral model [17, 24].

3.3. Spherical Harmonics Filter

The eigensolutions of the linearized equation of (3-1) without zonal mean flow represent
the Rossby–Haurwitz waves [11], whose spatial structures are the same as those of the spher-
ical harmonics. The phase speed of Rossby–Haurwitz waves is expressed as−2/n(n+ 1),
wheren is an integer denoting the total wavenumber. With the double Fourier series as the
basis functions, a limited number of eigensolutions are exact form≥ 3, while all eigenso-
lutions are exact form< 3. At any time, the vorticity field can be expressed as the sum of
these eigensolutions. From these we must filter out the incorrect eigensolutions from the
total field to maintain the accuracy and stability of the long-term numerical integration.

To calculate the eigenmodes of the linearized equation of (3-1) we expand the vortic-
ity using the basis functions in (3-3) with a meridional truncationN and letζn,m(t)=
ζ̂ n,m exp(−iσ t). Then we get an eigensystem with a spectral components base,

Bζ̂ = σ̂ ζ̂, (3-14)

whereB= D−1A andσ̂ = σ/2m, andζ̂ represents a column vector ofN/2 components for
both even and odd modes. The eigensystem is solved by the use of Mathematica [30] for
various resolutions. In Table III, the normalized error calculated for selected wavenumbers
is illustrated. We confirmed that only the firstNe modes are correct whereNe is given as

M/2− (|m| − 2)/2 for evenm

M/2− (|m| − 1)/2 for oddm.

Thus, we must take the zonal truncation to be not less than the meridional truncation, i.e.,
N ≤M in the present model.
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TABLE III

Normalized Error of Eigenvalues for Zonal Wavenumbers 3, 4, and 16

n m= 3 (odd) m= 3 (even) m= 4 (odd) m= 4 (even) m= 16 (odd) m= 16 (even)

1 −0.18E−14 0.41E−15 −0.55E−15 0.45E−14 0.23E−15 −0.53E−15
2 −0.20E−15 −0.26E−14 0.29E−15 0.36E−14 −0.29E−15 0.82E−15
3 −0.77E−15 0.19E−14 0.62E−15 0.15E−15 −0.72E−15 −0.26E−14
4 0.18E−14 −0.19E−15 0.40E−14 −0.11E−15 −0.15E−14 0.35E−15
5 −0.80E−15 0.10E−14 0.13E−15 0.20E−14 −0.13E−14 0.28E−15
6 −0.31E−15 0.72E−15 0.72E−15 0.00E+00 −0.16E−14 −0.98E−15
7 −0.41E−15 0.58E−15 −0.10E−14 −0.13E−15 −0.70E−15 0.15E−14
8 0.10E−14 0.14E−14 0.22E−14 0.41E−14 0.00E+00 0.21E−15
9 0.23E−14 0.91E−15 0.54E−15 −0.16E−14 −0.45E−15 0.24E−15

10 0.60E−15 0.10E−14 0.30E−14 0.26E−14 0.93E−03 0.10E−02
11 −0.71E−15 −0.13E−14 0.52E−15 0.35E−14 0.21E−01 0.23E−01
12 0.15E−14 −0.24E−14 0.24E−14 0.13E−14 0.10E+00 0.11E+00
13 −0.32E−14 0.17E−14 0.17E−15 0.75E−15 0.27E+00 0.28E+00
14 0.75E−15 0.10E−14 −0.18E−14 0.21E−14 0.50E+00 0.50E+00
15 0.25E−15 0.68E−15 0.91E−15 0.85E−15 0.73E+00 0.74E+00
16 0.22E+00 0.22E+00 0.45E+00 0.45E+00 0.92E+00 0.92E+00

Note.The left column denotes the mode number, and “odd” and “even” imply the symmetric and antisymmetric
modes with respect to the equator.n represents thenth mode of the eigensolution.

The detailed procedure for applying the spherical-harmonics filter to the vorticity field
in the case of odd modes (hemispherically symmetric modes) is illustrated. We first solve
the linear system

Qa = ζ
ζ ≡ {ζ1,m, ζ3,m, . . . , ζN−1,m}T (3-15a,b,c)

a ≡ {a1,a3, . . . ,aN−1}T ,

whereQ is an N/2× N/2 matrix consisting of the eigenvectors. Aftera is obtained, it
is madean= 0 for the lastNe solutions. Then filtered coefficients for the vorticity are
calculated with the operation of the left-hand side of (3-15a). It should be remembered that
the filtering actually selects the wave components relevant to the triangular truncation for
the spherical-harmonics-based spectral model.

The number of operations required to apply the spherical-harmonics filter once is ap-
proximately.M N2 (LU decomposition ofQ is done only once), which is much larger than
that needed for the evaluation of nonlinear termsO(N2 log2 J).1 So, to keep the advantage
coming from the FFT unharmed by the application of the spherical-harmonics filter, it is
desirable to use it less frequently than everyO(M/ log2 J) time steps. This corresponds to
one application every several tens of time steps even for very high resolution, e.g.,M = 512.
As will be shown later, such less frequent use proves to be sufficient for the prevention of
numerical instability. Moreover, stability is not so sensitive to the small change in frequency.

1 Since the advantage of the double Fourier series model lies in the significant enhancement of efficiency for
the meridional transform, the operation counts should be compard for the meridional direction.
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3.4. Tests with Rossby–Haurwitz Waves

In this section, we use the rotated, stable Rossby–Haurwitz wave [13] for tests. The
Coriolis parameter and the initial relative vorticity are given as

f (λ′, θ ′) = 2 sinθ ′

ζ(λ′, θ ′) = 2r sinθ ′ + rn(n+ 1) cos4 θ ′ sinθ ′ cos 4λ′, (3-16a,b,c)

r ≡ 2/{n(n+ 1)− 2}

wheren=m+ 1 with m= 4. λ′ andθ ′ are defined as

sinθ ′ = Rxz sin(γ + α)
tanλ′ = cosθ sinλ

Rxz cos(γ + α)
(3-17a,b,c,d)

Rxz = (cos2 θ cos2 λ+ sin2 θ)1/2

γ = arctan

(
tanθ

cosλ

)
,

with θ being the latitude andα representing the rotation angle of the earth axis. This
corresponds to a stationary Rossby–Haurwitz wave of(n,m)= (5, 4) mode superimposed
on the basic flow of superrotation (the first term on the right-hand side of (3-16b)). Asα

increases toπ/2, the flow over the poles becomes stronger.α very close toπ/2 will be the
most severe test because it contains the asymmetry between the east and west hemispheres.
The stream function andu obtained from (3-16b) with the rotation angleα=π/2− 0.05
are illustrated in Fig. 2. The error estimates are

L2 =
[
(u− uT )

2+ (v − vT )
2
]1/2[

u2
T + v2

T

]1/2
(3-18a,b)

L3 =
max

{
(u− uT )

2+ (v − vT )
2
}1/2

max
{

u2
T + v2

T

}1/2 ,

where the square brackets denote the global average.u and v are thevelocities on grid

FIG. 2. Initial fields of stream function (left) andu-velocity (right) with contour interval of 107 m2 s−1 and
10 m s−1, respectively, in the case ofα=π/2− 0.05. Positive (negative) values are in solid (dashed) lines, and
latitudinal circles and meridians are drawn every 30◦. Only the northern hemisphere is shown.
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FIG. 3. Fields of stream function (left) andu-velocity (right) at 64.5 h withα=π/2− 0.05. The initial basic
flow is reduced to 0.9 of that in Fig. 2. The contour interval is the same as that in Fig. 1.

points, whileuT andvT are the reference velocity fields which are related with (3-16b).
We integrated the vorticity equation with a leapfrog time scheme for 14 days, which is
the time required for the (5, 4) mode of the Rossby–Haurwitz wave to have one evolution
without basic flow. One time step is taken as 540, 270, and 135 s for M16, M32, and M64,
respectively.

To help understand the error growth with the basic flow slightly deviated from the sta-
tionary condition (3-16b), we first calculated the time evolution of (3-1) when the basic flow
of superrotation is reduced to 0.9 of that in (3-16b). Figure 3 shows the stream function and
zonal velocity withα=π/2− 0.05 at 64.5 h, at which time the errorL2 reaches 0.4. It is
apparent that due to the weak basic flow the Rossby–Haurwitz wave travels in the direction
opposite to that of the basic flow.

Figure 4 shows the error growth for M32, where the spherical-harmonics filter is used
every Je time steps. Although the errorL2 grows with time exponentially, it remains
O(10−10)–O(10−12) at day 14. The errors are almost the same forJe= 30 and 40 but
increased by nearly 2 orders forJe= 50. The errorL3 shows a similar time variation toL2

but has a nearly 11 order smaller magnitude thanL2 at early stages. However, it can be
seen that the difference betweenL2 andL3 decreases sharply with time forJe= 50 beyond
4 days.

FIG. 4. Time variation of log10 L2 (in dashed lines) and log10 L3 (in solid lines) forα=π/2− 0.05 and M32.
The spherical-harmonics filter is applied everyJe time steps.
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FIG. 5. Time variation of log10 L2 for M32 (dashed line) and T32 (solid line) withα=π/2− 0.05 andJe= 30.

As might be expected, the errorL2 increases with the rotation angle withJe fixed, which
was 0.36× 10−12 and 0.65×10−12 for α= 0 andα=π/4, respectively(0.23× 10−11 for
α=π/2− 0.05 in Fig. 4), in the case ofJe= 30.

The quality of the results is tested by comparing them with those of the spherical-
harmonics model [10, 19] of the same resolution, T32 having the total grid points of
K × J= 128× 65. For this resolution the maximum normality error of the Legendre func-
tions is 2.3× 10−14 (cf. Jacobet al. [15]). One time step is taken as the same for M32,
270 s. The same Fourier filter as in (3-13) was used at every time step, too. We compare
in Fig. 5 the errorL2 of M32 with Je= 30 and T32. This shows that the result of M32 is
more accurate than that of T32 by about 11

2 orders. Time variations of the errors for the two
models are very similar. Both models exhibit an exponential error growth and the growth
rate slightly increases after day 6 or so.

Figure 6 shows the effect of the model resolution, where the spherical-harmonics filter
is used every 10, 30, and 60 time steps for M16, M32, and M64. At earlier stages the error
increases as the model resolution becomes better, while this is reversed at later stages. At
day 14, the error for M16 is about one order larger than that for M64.

FIG. 6. Time variation of log10 L2 with α=π/2− 0.05 for various resolutions. The spherical-harmonics filter
is applied everyJe time steps.
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FIG. 7. Same as in Fig. 6 except that the spherical-harmonics filter is not applied.

In Fig. 7 we present the error growth when the spherical-harmonics filter is not used. It
is noted that the error grows with time with a much larger growth rate than the cases where
the spherical-harmonics filter is used. As the resolution becomes large, the growth rate also
becomes large. For M64, the error reachesO(1) at day 12 and the model encounters an
overflow around day 13.

3.5. Tests on the Advection of Cosine Bell

In this section, we present the test with the advection of a scalar field, which is conserved
following the motion. The equations used are the vorticity equation (3-1) and the advection
equation

∂h

∂t
= − U

sin2 φ

∂h

∂λ
− V

sinφ

∂h

∂φ
, (3-19)

whereh may be any scalar field. For a direct comparison with other results [15, 28], leth be
the geopotential height field scaled byg/aÄ2, with g being the gravitational acceleration.
The advective flow field of rigid rotation att = 0 is given as

ζ(λ′, θ ′) = sinθ ′/6 (3-20)

and is time-integrated by (3-1). The maximum flow speed is about 40 m/s, which gives one
rotation of the scalar field during 12 days. The initial height field is given as the cosine-bell
pattern [29], with its maximum value being 1000 geopotential meters in dimensional units.

Figure 8 shows the height field at various time stages and error fields after one rotation for
α=π/2− 0.05 and M32. At day 12, the field of true solution is drawn in solid lines over the
calculated pattern (dashed lines). Two contour lines are almost exactly overlapped so that we
cannot visibly distinguish one from the other. The error field, having about 1% fluctuation,
exhibits a nearly circular structure with the alternating sign, with greater amplitude over the
cosine bell than over the outside region, which is common to other numerical methods as
in [15, 28]. Not shown here is the fact that the amplitude of the error fluctuation is reduced
to 0.24% at day 12 for M64.
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FIG. 8. (Left) Height field at days 1.5, 10.5, and 12 withα=π/2− 0.05. For day 12 the fields of exact
solution (solid line) and calculation (dashed line) overlap. (Right) Height field error after one rotation (12 days).

Figure 9 shows the time variation of the normalized errors of hourly samplesL1, L2, and
L3, defined as

L1 = [|h− hT |]
[|hT |]

L2 =
[
(h− hT )

2
]1/2[

h2
T

]1/2 (3-21a,b,c)

L3 = max|(h− hT )|
max|hT | ,

wherehT denotes the true solution and the square bracket again means the global average.
It is shown that the growth rate and magnitude of the error are very similar to one another

FIG. 9. Height error growth with time.
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for α=π/2− 0.05, π/4, and 0. No significant signal of passing over the poles is seen from
the error variation with time, which implies the absence of the so-called pole problem. It
is of interest to note that the errorL1 decreases with time for M32 while it increases for
M64. As in [15, 28], the curves are oscillating with time, reflecting the sampling errors on
grid-point values.

Although precise comparison of the results with other methods is difficult because of
different time-step sizes and resolutions, we give some comparisons for selected model
parameters. For convenience, we compare our results for M32 to those of T42 for the
spherical-harmonics model and 24× 16× 16 for the spectral element model (for simplicity,
referred to as SEM). The grid points of M32 and T42 are 8192, and SEM has 6144 grid
points, while the time step sizes are 270, 1200, and 90 s, respectively. TheL2 errors at day
12 are 0.015, 0.04, and 0.02, where the rotation angleα is taken asπ/2−0.05 for M32 and
T42 andπ/2 for SEM (the difference inα does not produce a significant change in errors).
The error-growth rates (obtained by approximating the curves as a linear behavior) ofL2

for M32 and SEM are similar to each other, whileL2 error for T42 is at least five times
larger than M32 and SEM due to large time step size [15].

4. DISCUSSION AND CONCLUSIONS

A new method for the solution of simple elliptic equations on a sphere by approximating
the functions using truncated double Fourier series was presented with applications to
the time-dependent nonlinear vorticity equation and advection equation. In addition to the
advantages provided by Boer and Steinberg [2] and Yee [32], the present method gives a more
definite and accurate formula because the constraint imposed on the spectral coefficients
is not necessary, which can lead to increased accuracy and stability in a time-stepping
procedure.

The solution of the Poisson equation was found to be more accurate than that by Yee’s
method for the even zonal wavenumbers other than zero, which comes from the use of
basis functions satisfying the pole condition as in (2-5). The accuracy remains almost
unchanged from Yee’s [32] for odd zonal wavenumbers because the same basis functions
are used, implying that taking the interior grids does not affect the accuracy for this problem.
However, the difference in accuracy for zonal wavenumber zero still exists in spite of
adopting the same basis functions when high resolution is used. If a function used for the
test includes both even and odd zonal wavenumbers, the accuracy appears to be unchanged
from Yee’s because the improved accuracy for even zonal wavenumbers will be masked by
odd zonal wavenumbers. It was shown that the error for the solution of biharmonic-type
elliptic equations increases as the relative importance of the fourth order term increases. The
accuracy drops by more than two orders compared to the Poisson equation when the relative
magnitude of the fourth order term is one order larger than that of the second order term.

Through tests with the Rossby–Haurwitz wave of (5, 4) mode, which is stable [13], it
was found that the new method can be applied successfully to the vorticity equation with
high accuracy provided that the spherical-harmonics filter is used appropriately. The error
measure defined in Eq. (3-18a) remains in the range fromO(10−11) for M16 to O(10−12)

for M64. To give a direct comparison with the reference solution, we time integrated the
vorticity equation with the spherical-harmonics model using the same resolution (i.e., T32)
and time-step size. The result showed that the present method is more accurate than the
spherical-harmonics model by a factor of about 11

2 for the test used here.
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Numerical integration without the spherical-harmonics filter was found to produce large
errors compared to the results stated above. In particular, for M64 the error grows toO(1)
around day 12. The cure for this must be the spherical-harmonics filter, as was implied above.
However, too frequent use of it deteriorates the efficiency coming from the use of double
FFT. We confirmed that sufficiently less frequent use of it to keep the advantage of FFT
works for test cases. Along with the advantage of double FFT, the present model can reduce
the zonal grids near poles as in the spherical-harmonics model [12], while the shortcoming
remains unavoidable that large storage is needed for the spherical-harmonics filter, which
is comparable to that needed for the Legendre functions in the spherical-harmonics model.

Further application to the advection equation was carried out with one of the standard
test method in [29]. Error measures for the strong advection of cosine bell with various
rotation angles indicated that the present method is capable of producing accurate and
stable calculations without the pole problem.

Test results as shown in Section 3 suggest that the double Fourier series used in this
study could be applied to the numerical weather prediction model including shallow water
equations without difficulty. We will present the test results with the standard test set
proposed by [29] in the future.

APPENDIX

The vorticity equation in flux form is written as

∂ζ

∂t
=− 1

sin2 φ

∂

∂λ
(Uη)− 1

sinφ

∂

∂φ
(Vη), (A-1)

with the definitions as in Section 3. LetXm(φ, t) andym(φ, t) be the zonal Fourier trans-
forms ofUη/sin2 φ andVη, respectively. Evaluation of the longitudinal advection term is
straightforward. The(n,m) component of latitudinal advection term for oddm is calculated
as

−1

π

∫ π

0

sinnφ

sinφ

[
∂

∂φ
ym

]
dφ

= −1

π

∫ π

0
ym

[
n cosnφ

sinφ
− sinnφ cosφ

sin2 φ

]
dφ

= −1

π

∫ π

0

ym

2 sin2 φ
[(n− 1) sin(n+ 1)φ − (n+ 1) sin(n− 1)φ] dφ. (A-2)

A similar expression form= 0 may be obtained with ease. For evenm (6=0),

−1

π

∫ π

0

sinnφ

sin2 φ

[
∂

∂φ
ym

]
dφ

= −1

π

∫ π

0
ym

[
n cosnφ

sin2 φ
− 2 sinnφ cosφ

sin3 φ

]
dφ

= −1

π

∫ π

0

ym

2 sin3 φ
[(n− 2) sin(n+ 1)φ − (n+ 2) sin(n− 1)φ] dφ. (A-3)
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Thus the spectral form of the vorticity equation is written as

d

dt
ζn,m =

{
−imXn,m + {(n− 2)Yn+1,m − (n+ 2)Yn−1,m}/2 for evenm (6=0)

−imXn,m + {(n− 1)Yn+1,m − (n+ 1)Yn−1,m}/2 for oddm andm= 0

d

dt
ζ1,0 = −2Y0,0, (A-4a,b,c)

whereXn,m andYn,m are the meridional transforms ofXm(φ, t) andYm(φ)≡ ym(φ)/sin2 φ,
respectively. Truncation forYn,m should be taken one level above that ofXn,m, andY−1,m

is discarded. In the derivation of spectral form for the latitudinal advection term, we used
the fact thatVη/sin2 φ must be bounded at poles.

Since from (A-1) the global integral of the vorticity is conserved with time, the spectral
equations (A-4) should also satisfy this conservation property. Using Eq. (3-10),

d

dt
[ζ ] = d

dt

N∑
n=0
even

ζn,0

1− n2

= −1

2
Y1,0+ 1

2

N∑
n=2
even

1

1− n2
{(n− 1)Yn+1,0− (n+ 1)Yn−1,0}

= − 1

2(N + 1)
YN+1,0; (A-5)

thus we must discardYN+1,0 to meet the vorticity conservation in the absence of forcing and
dissipation. Time integration with (A-4) showed that the error for Rossby–Haurwitz waves
tested is larger than that resulting from the time integration with (3-8) by nearlyO(103).
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