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The solution of elliptic and vorticity equations on a sphere is studied using dou-
ble Fourier series as orthogonal basis functions. The basis functions incorporate
sine series weighted by cosine latitude as meridional basis functions for even zonal
wavenumbers other than zero to meet the pole condition. As to the solution of Pois-
son’s equation, it is found that the new method gives improved accuracy compared
to the method of YeeMon. Weather RevL09, 501, 1981) due to the absence of con-
straints imposed on spectral coefficients with the operation number being slightly
increased. The new method is applied to the vorticity equation along with the use
of Fourier and spherical harmonics filters, and its accuracy is tested for the rotated
Rossby—Haurwitz wave. It is shown that the basis functions adopted here provide
high accuracy for all tests used. Numerical integration without spherical harmon-
ics filters indicates that they are necessary for stable and accurate time integration.
Comparison with the spherical harmonics model reveals that the present method is
more accurate by a factor of ordeg for the test case. Further application to the
advection equation is carried out. The error measure for the strong advection of the
cosine bell with various rotation angles indicates that the present method is capable
of producing accurate and stable calculations without the pole problem, suggesting
that it could be applied to the numerical weather prediction model, including shallow
water equations, without difficulty. Extension to the shallow water equations with
accuracy tests as in Williamsaat al. (J. Comput. Phys102 211, 1992) will be
given in the future. Additional time could be saved by introducing the reduced grids
near poles in the present method, besides the advantage of applying FFT to both
longitudinal and latitudinal directions. © 2000 Academic Press

Key Words:double Fourier series; elliptic equation; Poisson equation; spectral
method; spherical-harmonics filter; vorticity equation.
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1. INTRODUCTION

The use of double Fourier series in solving patrtial differential equations (PDES) is
attractive method because in addition to its high accuracy, a fast algorithm is available w
transforming from the wave to the grid domain and vice versa. Double Fourier series
spectral or pseudospectral method for the global atmospheric models has emerged
alternative to the spherical harmonics method in an attempt to reduce the complexity
the computational cost that is primarily caused by the use of Legendre functions [2, 4,
21, 23]. Nevertheless, most global atmospheric models use the spherical-harmonics-t
spectral method [9, 15, 27]. Reasons for this may be found in [5]. Recently, a stable
accurate pseudospectral method in which double Fourier series are used was develop
[24] based on the method of [17].

When double Fourier series are incorporated as basis functions in spectral mett
for the solution of PDEs in a spherical coordinate system, one must be careful that
boundary condition at the poles is satisfied. Such a condition, however, is not neces
for the pseudospectral method as used by Merilees [17] and 8paltZ24] because 2-
periodicity is used on great circle meridian. One way to overcome this is to select bz
functions that satisfy the pole condition [23]. Another way is to impose a constraint «
spectral coefficients when each basis function does not satisfy the pole condition [2, 4,
Since spherical harmonics are represented as proper combinations of half-ranged cosi
sine series, one naturally tries to use double Fourier series expansions that are appro
for the representation of spherical harmonics [4, 7, 8, 21, 26]. Such basis functions do
necessarily satisfy the pole condition.

The Poisson equation on a spherical surface appears in a variety of problems. A nur
of numerical methods for its solution have been published [1, 6, 18, 21, 25, 31, 32]. It of
serves as an important method of testing whether a certain kind of basis function ca
adopted in a spectral method for PDEs. Since spherical harmonics are eigenfunctions c
Laplacian operator, the most accurate solution of the Poisson equation may be obtaine
the use of these functions even for higher order equations such as the biharmonic eque
However, such a solution requires larger computations as the resolution increases.

Yee [32] presented the solution of the Poisson equation using double Fourier serie:
a spherical surface. The basis functions were sine (cosine) series for odd (even) z
wavenumbers, which were used originally by Orszag [21], though not in explicit expre
sions,

In($) = _ Gnml{(1—5)cosng + ssinng)},

n=0

whereg is latitude+ /2 so that the zero af is taken at the south polgy, is the Fourier
transform ofg(x, ¢), ands=0(s=1) for even (odd) zonal wavenumber, respectively
(in fact, the colatitude was used in [32] insteadpdf Use of the cosine function makes it
necessary to impose a constraint on spectral coefficients for even zonal wavenumbers e
zero because it does not vanish at the poles. In principle, the basis functions above ce
be applied to differential equations involving advection terms on a shpere for two reasc
First, the singularity from the factor (Ein ¢) is unavoidable or may be treated inefficiently.
Second, any spectral components representing a physical quantity should be determin
the governing equation in use, but not by the necessity of the pole condition itself.
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An example of the application of double Fourier series to an advection equation c
sphere is found in [2], where interior grids are used to avoid singularity over the poles
the meridional basis functions are defined over a great circle passing over the poles. .
the basis functions do not satisfy the pole condition, it is required that the sum of odc
even) coefficients for the meridional function should vanish. However, it is questiong
whether this requirement must be fulfilled during time integration.

In this study, we present a double Fourier series method for the solution of simple elli
equations, the vorticity and advection equations, on a sphere based on interior grids
attempt to provide the first step for the application to a numerical weather prediction mq
including the shallow water equations. The new method is similar to Yee’s method [32
that double Fourier series with half-ranged sine or cosine series for meridional direc
are used, but the basis functions are different from Yee's. In previous studies inclu
[32], double Fourier expansion on a sphere (half-ranged functions in meridional direct
incorporates explicitly cosine series for even zonal wavenumbers [4, 21]. We also u
cosine series, but in implicit expression. That is, for even zonal wavenumbers except
we expand dependent variables with sine series weighted by cosine latitude, which
it unnecessary to impose a constraint on spectral coefficients in order to satisfy the
condition.

In the next section the solution of elliptic equations including the Poisson equation ¢
sphere using double Fourier series is described. Section 3 shows the application of the
method to the vorticity and advection equations with test cases incorporating the Ros
Haurwitz wave and the advection of a cosine bell, respectively. Comparisons with o
methods, asin [15, 28], are also presented. Discussion and conclusions are given in the
section.

2. POISSON EQUATION ON A SPHERE

2.1. Basis Functions and Poisson Equation

The Poisson equation over a sphere with unit radius is written as

du 1 9%
— —sSing— + ——— =491, 9), 2-1
sing d¢ d’ad) + sin? ¢ dA2 9+ ¢) 1)
where is longitude andp is defined as in Section 1 (see also Boer and Steinberg [Z
g%, ¢) is the forcing function given. As a usual procedure, we expand the field variak

with a Fourier series in longitude with a truncativh e.g.,

M

UL, ) = Y Um(¢)e™, (2-2)

m=—M

wherei = /—1, un(¢) is the complex Fourier coefficient given by

K-1

1 —imay
Un(@®) = 1 > _ Ul p)e™™, (2-3)

k=0
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andi, = 27k/K andK is the number of data points along a latitude circle. To make th
transforms in (2-2) and (2-3) complete, we skt 2 K. Then, we obtain

L9 6L @) = ") = G (2-4)
singdg " dg sigg ™) = Gml@)
wheregn(¢) is the complex Fourier coefficient gia, ¢).
Without loss of generality, the boundary conditions at the poles for the Fourier coefficie
of any analytic true scalar functions, e.gn(¢), can be imposed:

@) = finite, m=20
Inl®) =10, m=£0
N (2-5a,b,c,d)
ig @) = {flmte, oddm
do " 0, evenm.

These are classified as the essential boundary conditions for the Laplacian operator [4].
basis functions for spectral representation in the meridional direction should satisfy th
conditions. It is clear that the use of either sine or cosine series alone as basis funct
does not meet the boundary conditions above. If the basis functions do not satisfy the
conditions, additional constraints are required [2, 21, 31, 32]. In this study we approxim
Om(¢) (andun(¢)) with the truncated sine or cosine functions

J-1
Go(®) = Y _ GnoCOSNG, m=0
n=0
J
Im($) =) GomSiNNg, oddm (2-6a,b,c)
n=1

J
In(@) = > _ Gnmsin gsinng,  evenm (£0).

n=1

Any positive integer of will be appropriate for the pole conditions written above. With
| > 2, the cosine series can also satisfy the pole condition. However, since with theye
round-off error becomes large for the inverse transform [11], we select the minimum va
ofl, i.e.,| = 1. Equations (2-6a) and (2-6b) are identical to those used in previous stuc
[4, 21, 32]. Explicit use of the cosine series for emerequires the imposition of a condition
that the sum of expansion coefficients should vanish [4, 21, 32]. With the basis functit
in (2-6), however, this is not the case.

We assume that the field variables are given on interior grids in the latitudinal directiol

Om(®) = gm@’j) . (2-7a.b)
¢ =n(j +0.5)/7, j=012,...,3-1,
wherelJ is the total number of grid points between poles. With this grid location we do n
have to deal directly with the grid points on the poles, and thus, we can avoid the singula
arising from dividing by sir in the case of evem (£0), which is needed to take advantage
of the fast sine transform. Evaluation of any terms (e.qg., the advection terms, as will be s
in the next section) that include the operation géih ¢ is also possible over the sphere.
The spectral coefficients, m are calculated by either sine or cosine transforms on interic
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grids with a fast algorithm found in Pressal. [22],

b J-1
Onm = j gm(¢j) cos(n¢,—/J), m=0,
j=0
C J-1 .
G = 5 jz:; Om(;) Sin(Ng; /J), oddm, (2-8a,b,c)
c J-1
Onm = 5 (Gm(9j)/ singj) sin(ng;/J),  evenm (£0),

=0

whereb=1forn=0andb=2forn>0,c=1forn=J andc=2 forn < J. The proce-
dure for obtaining the solution of (2-4) is basically similar to that of Yee [32]. However, sol
differences are found between the two procedures; these arise partly from the differen
basis functions and partly from the choice of interior grids.

2.2. Spectral Representation for Odial
Multiplication by sirf ¢ and substitution of the Fourier expansion (2-6b) into (2-4) yield:

(-1 -2) n2+2m2u (n+Hn+2)
4 n-2,m 2 n,m 4 n+2,m
1 1 1
= _Zgn—zm + Egn,m - Zgn+2,m, (2-9)
wheren=2,4,...,J for evenn, andn=1, 3, ..., J — 1 for oddn. Discarding the ex-

pansion coefficients with indices higher than the truncation limit, Eq. (2-9) constitutes
matrix equations for eaatm, with even or odd, separately,

Du = Ag, (2-10)

whereD andA are square matrices df/2 x J/2 with tridiagonal components only whose
values are calculated by the coefficients in (2e€4ndg are column vectors whose compo-
nents are the expansion coefficientaigi¢) andgn(¢). As to a particular index, it holds
that

A1 =3/4 for oddn, (2-11)

whereg_1 m = —01.m Was used due to ther2periodicity of gm(¢).

2.3. Spectral Representation for Even(+£0)
Equation (2-4) is rewritten with transformed variabggsandu? (g5, = gm/ sing, Uy, =
Um/ Sing) as
" . 3 / . .
(us)" sin? ¢ + 5 (uS))"sin 2 + us, cos % = g, sir’ ¢, (2-12)
where the prime denotes differentiation with respee.t&ubstitution of Eq. (2-8c) yields

algebraic equations similar to (2-9),

n(n—1)UI n2+2m2UI +n(n+1)u 1 +1
4 n-2,m 2 n,m 4 n+2,m — 4_gn—2,m 2gn,m 4gn+2,m,

(2-13)
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wheren=1,3,...,J—-1(n=2,4,...,J)for odd (evenn. Again, this can be rewritten
in matrix equations such as (2-10). For the same reason stated above, the matrix comp
for a particular index is given as

A1 =3/4 for oddn.

2.4. Spectral Representation fan=0

Linear algebraic equations exactly the same as (2-9) can be obtained with the us
expansion coefficients, but thistime=0, 2, ..., J—2forevem,andn=1,3,...,J-1
for oddn. Itis trivial from (2-9) to show thaD1 1 = D, 1 = O for evem. Matrix components
that should not follow the coefficients in (2-9) are

Ai1=1/4 for oddn
A1 =-1/2 for evenn,

whereg_1 0= 01,0 was used for the first equation, and the second identity comes from

=t 1-cos?
Go(@) Sinf ¢ = Zo(p) = ; On0 COSNY ————

o 1 . 1 1

S Lo = 290,0 292,0 494,0-
From direct substitution of (2-6a) into (2-4) it is clear that we must disgapg andu_; o
in (2-9) so that we havé; , = —1/4 andD;,=1/2.

2.5. Tests of the Method

To get the solution oli(Ay, ¢;) from giveng(i, ¢;), we may follow the procedure
shown in Yee [32]. First we obtain the spectral components of the forcing fungitiGsy )
by Fourier transforms in longitude. Prior to the Fourier transform in latitude, a variak
transform such agm(¢;j)/ sing; is carried out, and then the spectral coefficiegpts are
calculated. We next solve the matrix equations as in (2-10): The right-hand side is f
calculated to get a column vector, i.& = Ag. Finally the tridiagonal matrix equation
Du=Z is solved. Since the matrix elemerdg 1 = D, 1 =0 for m=0 and evem, ug
may have an arbitrary constant. The tridiagonal systems are calculated very efficie
by prehandling the matrices just once to facilitate backward substitution in a Gauss
elimination procedure. In our method an extra procedure that is not found in Yee [:
is needed to gegm(¢;)/ sing; for evenm (#£0), which occurs twice. This requires only
2 x J x M operations, which is just a small percentage of the total number of operatic
involved in the entire procedure. In test calculations, we seletct be an integer power
of 2 to take full advantage of the FFT algorithm, and deternkne 2J giving the same
resolution in longitude and latitude. Referring to Yee [32], we see that the total numbel
operations needed to getix, ¢;) from giveng(ik, ¢;) on regular grids (i.e., not interior
grids) is 1202(1 + log, J) with this grid number. Therefore i = 128 is given, the number
of operations in the new method exceeds that in Yee [32] by about 2%.
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To test the accuracy of the new method and to give a direct comparison with the prev
study, we introduce a function whose analytic solution is known,

gt ¢) = g* + ¢,
a {(m + 1)(Mm + 2) cose sin™ ¢ cosm(r — dm) form> 0

" | 2cosp form=0 (2-14)
b {m(m + 1) sin™ ¢ cosm(x — en) form>0
~ |—2(1+3cos2) form=0,

whered,, ande,, are random phases ranging from 0 to. Zhe exact solution for this is

Uk, @) = U+ U°,
0 — {cos¢ sin™ ¢ cosm(L — dpy) form>0

—Ccos¢ form=0 (2-15)
b sin™ ¢ cosm(ix — en) form>0
~ |+cos2 form = 0.

The functiong? (gP) is antisymmetric (symmetric) about the equator, denoting the first ar
symmetric (symmetric) mode of associated Legendre function with the zonal wavenun
m. To see the dependence of the accuracy of the calculations on spatial resdligigiven
as 16, 32, 64, and 128, which correspond to the grid numbexsl¥ 64 x 32, 128 x 64,
and 256x 128, respectively.

In the computation all the variables were set to be in double precision for which float
points of 15 digits were available (DIGITAL FORTRAN 90 was used on DIGITAL UNIX
Alpha systems). For a direct comparison with the new method, we also carried out the ¢
computation using Yee's method. As a measure of accuracy we calculated the norma
L2 error E over the globe defined by

2 = 22 (i — ”@i)z, (2-16)

2k 2 (uej)
whereu ; and u,ﬁj denote the calculated and analytic solutions on grid points. In Fig
we show the result log E for various resolutions, where all calculations were repeat:
30 times with different sets of random phasés,ande;,, and averaged. It is noted that
the magnitude of error exhibits a fluctuation with a zonal wavenumber whose amplit
reaches approximately one order. At fixed resolutionrarttie error remains on the same
order for both the present (denoted by M16, M32, M64, and M128) and Yee's method (Y
Y32, Y64, and Y128). As it should be, there exist no significant differences in error for c
m because the basis functions are the same. As a whole, however, the present met
more accurate than Yee's method for eventypically by a factor of several times, in the
case of high resolutions (12864 and 256« 128 grids). This difference is attributed to the
fact the basis functions as in (2-6¢) satisfy the pole condition (2-5d) and thus do not r
the constraint imposed on spectral coefficients used in Yee's method. For both mett
accuracy increases at fixedin direct relation to resolution, except for low wavenumbers
for which accuracy slowly decreases with increased resolution.
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FIG. 1. Variation of log, E with zonal wavenumbers for various resolutions. Dashed (solid) line denotes tt
result of Yee's method (new method).

2.6. Extension to Simple Elliptic Equations

It may be possible to extend the present method to the solution of other simple ty
of elliptic equations on a sphere. One such equation is the Helmholtz equation, wk
frequently occurs in a variety of problems:

VZu —eu = gk, ¢). (2-17)

With ¢ =0, Eqg. (2-17) becomes the same as Eq. (2-1). In this case the global integral of
forcing function does not necessarily vanish. With some manipulation, Eq. (2-17) is writt
as the matrix equation

Fu=Ag, F=D-¢A (2-18a,b)

The same procedure as stated above can be applied to the solution of the columun.vect
Unlike in Eqg. (2-10)uo o is determined uniquely in the casesof 0.

A second example is the biharmonic equations [6], whose general form may be writ
as

(V2 —&)V2u=g(x, ¢). (2-19)

This can be solved with ease if we introduce an intermediate variabté/2u. It should
be remembered that integration of the forcing function over the globe vanishes for t
problem. As noted by Dennis and Quartapelle [6], the accuracy of the solution is sub]
to the magnitude of. To investigate the dependence of the accuracy éor the new
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TABLE |
Normalized Error for Biharmonic
Equation of Helmholtz—Poisson Type
with m=32 K x J=128x 64)

logipe E
4 0.259986E-12
3 0.385253E-12
2 0.219036E-11
1 0.179361E-10
0 0.764823E-10
-1 0.108322E-09
-2 0.106658E-09
-3 0.944021E-10

method,¢ is set to vary over a range of several orders. For the evaluation of accur
the forcing function in Eq. (2-19) is given to satisfy Eqg. (2-19) wheis given as in
Eq. (2-15). The results witk x J =128x 64 andm = 32 are summarized in Table I. Note
that the accuracy does not change significantly untitcreases tdO(1), but increases
sharply in the interval of ~ O(10")-0(10°%). That is, as the relative magnitude of the
fourth order term becomes more important, accuracy decreases. In fluid dynamics inclt
numerical weather prediction models [14], fourth order Helmholtz—Poisson-type equat
(i.e., Eq. (2-19)) frequently appear. In such problems, the paramistgenerally very large
(orthe second order termiis relatively important) so that the degradation of accuracy ma
be a serious problem. The accuracy remains almost the same as that for the Poisson eq

Until now our interest has been focused on the solution of simple elliptic equations s
as Poisson, Helmholtz, and biharmonic equations when the forcing function is knowr
various problems the solution of the forcing function of the examples shown above, i.e.
result of operations of the Laplacian operator, is needed. First consider obtg{ning)
fromu(i, ¢) in Eq. (2-1). For this purpose the left-hand side of Eq. (2-10) is first calculat
using the spectral componentsy, to get a column vectaZ (=Du), andAg=Z is solved
for column vectomq.

Harmonic equations of orders higher than biharmonic are commonly found as a visc
term in numerical models with spectral method [16], ey, V8u. These equations
are also easily calculated by introducing an intermediate variable to yield a Poisson-
equation. Note that just one variable transform such,g®;j)/ sing; is required for the
evaluation of the fourth order equations as well as even higher order equations whe
want to obtain spectral coefficients of these from giu€h, ¢).

3. VORTICITY EQUATION AND SPECTRAL REPRESENTATION

3.1. Model Equation and Spectral Forms

The nondivergent barotropic vorticity equation on a sphere scaled by the eaatigisthe
inverse of rotation rat@ ! of the earth is written
ag U an V dn

o sitgor  sing (1)
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with the definitions of the variables as

n=¢+f,
= V2,
¢ v oy (3-2a,b,c,d)
U =using = —sin¢£,
_osing = ¥V
V =vsing = TR

where f is the Coriolis parameter andandv represent the zonal and meridional veloci-
ties, respectively. Equation (3-1) contains one prognostic variablmd three diagnostic
variables,yr, U, andV, that can be determined directly from the vorticity. We represer
the vorticity field as the sum of basis functions with wavenumber truncatbasdN for
zonal and meridional directions, respectively (one more meridional component is inclu
in zonal mean state):

M
(O d =) Cm(d, HE™

m=—M
S no Sn.m(t) coSNG form=0, (3-3a,b,c,d)
tm(@, 1) = { SN Cum(®) sinng for oddm,

Z:Ll Znm(t) sing sinng for evenm (£0).

One must be careful in applying the parity function gimand/or differentiation with
respect t@ to a true scalar function, say(i, ¢). Only certain combinations of differential
operators and parity functions are allowed to avoid the Gibbs phenomenon at the pole
which some examples are

g%ﬁsin%; p+q=0+2,..., and q=12..., (34
Y sinP ¢; p=+2+4,....

Thus the use o) andV instead ofu andwv, respectively, is for more reasons than to dea
with simpler forms. Further, all terms included in (3-1) may be classified as one of the
forms.

The spectral components ,, are obtained by half-ranged cosine or sine transform:s
which can be written in integral forms (see Eq. (2-8) for discrete forms)

b 1 tm(e, 1) cosng do form=0
tam® = { 2 [ tm(#, 1) sinng dg for oddm (3-5)
2 [em(@, 1)/ sing}sinngdg  for evenm (£0)
with b= 1forn=0andb=2forn > 0. The spectral components for the stream function ar

found by solving tridiagonal matrix equations as described in Section 2. Let zonal Foul
components ofJ (A, ¢, t) andy (4, ¢, t) beUn (¢, t) andym(e, t), respectively; then, the
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spectral form of the velocities is

_ {n{¢n+1,m — Yn-1m}/2 for evenm # 0
"M O+ DYniam — (N— Dyn_1m}/2  for others (3-6a,b,c)
Via,m = iMynm,

where

Us =Un/sing = —smq&8 VYs — Yr COSP

¢

(3-7)
(¥m = ¥m/sing)
is used for everm (£0). In an analogous manner, we may relate the spectral form
. (Eg—g) and ny4 (Esin¢>g—g) to that of 5. We must keep the meridional truncation for
Unm and (n4)n,m One level above that for the stream function and absolute vortigity
respectively. The spectral components of nonlinear terms are evaluated by the tran:
method [2, 3, 20]. We get grid-point valuesdf V, n,, andny by inverse transform and
calculate the nonlinear products suchiag / sir? ¢ andVn,/ sir? ¢, finally transforming
them into spectral components, m andY, m, respectively. Note that onl (M2 log, K)
operations are needed for each transform due to the availability of FFT, @hileN?) are
needed for the spectral harmonics model [3, 20]. Then, the spectral form of the vorti
equation (3-1) is written as

d
agn,m = _Xn,m - Yn,m~ (3'8)

The spectral equation does not require a necessary condition for the spectral compa
used in [2] because the basis functions satisfy the pole condition. The basis functiol
(3-3) make the spectral representation more accurate and simpler than for any other F
method ever used.

The integration of a function over the sphere may be derived in the spectral form
Boer and Steinberg [2]). Leg] denote the global average of a functigé, ¢):

1 2T
=5 [ [ o0.6singdido. (39)
T Jo Jo

Expansion ofy(1, ¢) with basis functions yields

1 [
[0l =5 /O L; Gn,0 COSNG sinqﬁ] d¢

N/2

- Z 92;2; o (3-10)

whereg, m are the spectral coefficients. Integration of nonlinear products such as enstre
and kinetic energy may be done by the transform method: Nonlinear products are eval
on grid points and the zonal component is transformed into the spectral domain to
(3-10). Although many more operations are needed than this, nonlinear products car
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be calculated directly from spectral components,

mm==}:}:}:%@mﬂ%ﬁ4wJ%mmﬁ+§:§:%@wmp+cw3Amﬂ)

modd n n

+‘2:E:Ej%%m%m+om{%&mmb+&mxm}

meven n

(0)

where the asterisk and c.c. mean the complex conjugate and

" n B n
SM.m = {nZ —(n=12 n-(n'+ 1)2}

no 1 n+1 3 n—1
Su(n. 1) = 2{(n’+1)2—n2 (n’—1)2—n2}

sm.n) = n n 1 n n
(n,n) = 4{n/2_(n_1)2_n/z_(n+1)2}_4{n2_(n/_3)2_n2_(n/+3)2}

with n£+n"= even.

Since from (3-1) the global integral of the vorticity is conserved over time, the spectraliz
equations should also satisfy this conservation property. Equation (3-8), however, doe:s
explicitly show the conservation of the vorticity. Nevertheless, the vorticity is conserved
a very good approximation during time integration, as will be shown below. On the ott
hand, if Eq. (3-1) is written in flux form, the corresponding spectral equations explicit
show the conservation of the vorticity, which is illustrated in the Appendix. We found th
the spectral form in (3-8) gives more accurate results for the test than does that in (A-4

3.2. Truncation and Fourier Filter

Giventhe zonal and meridional truncatibhandN, the number of grid points in longitude
(K) and latitude(J) should be determined sufficient to prevent the aliasing error:

K>3M+1  J>@N+1)/2 (3-11a,b)

In this problem, we seM = N (as will be seen latefN must be not greater thavi) and
choose the total grid points to satisfy (see Table Il for resolutions and number of grid poin

K=4M, J=2N. (3-12)

The transform grid points are located on the even positions in longitude, but along

TABLE I
Grid Numbers for Various Resolution

K J M N
M16 64 32 16 16
M32 128 64 32 32
M64 256 128 64 64

Note. K(J) is total grids in the zonal (meridional) di-
rection, andM (N) is the maximum zonal (meridional)
wavenumber.
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interior grid in latitude as in Section 2, which facilitates the meridional transform of a
function including thg1/sing) factor.

When spherical coordinates are used as in (3-1), a severe limitation on the size ¢
time step arises from the decrease of zonal grid size as the poles are approachec
zonal resolution increases with latitude by the fa¢figsing); therefore the resolution near
the poles is almosk times better than that at the equator. This inefficiency and sev
difference in resolution can be overcome by discarding higher zonal wavenumbers nec
poles [2, 12, 17, 24]. There are various ways to accomplish this. In this study, we res
the largest zonal wavenumber retained to be

min(M¢, M), M€ =6+ (M — 6) sing. (3-13)

This is done at every time step. With this filtering at least six zonal components are reta
atthe grid points nearestto the poles; correspondingly we have a zonal resolution at the
approximately six times better than that at the equator. If the equal resolutions are pro\
at the poles and the equatorial regidvi® = M sing), almost all of the Rossby—Haurwitz
waves may be wrongly represented by making the amplitude zero near poles.

In addition to the applicability of FFT for both longitudinal and latitudinal direction:s
this model has the important advantage that the reduction of zonal grids at high Iatitt
is also possible as in the spherical-harmonics-based spectral model [12], which cann
realized in the pseudospectral model [17, 24].

3.3. Spherical Harmonics Filter

The eigensolutions of the linearized equation of (3-1) without zonal mean flow repre:
the Rossby—Haurwitz waves [11], whose spatial structures are the same as those of the
ical harmonics. The phase speed of Rossby—Haurwitz waves is express2tgn + 1),
wheren is an integer denoting the total wavenumber. With the double Fourier series ac
basis functions, a limited number of eigensolutions are exaehfer3, while all eigenso-
lutions are exact fom < 3. At any time, the vorticity field can be expressed as the sum
these eigensolutions. From these we must filter out the incorrect eigensolutions fron
total field to maintain the accuracy and stability of the long-term numerical integration.

To calculate the eigenmodes of the linearized equation of (3-1) we expand the vo
ity using the basis functions in (3-3) with a meridional truncatrand let¢, m(t) =
ZnmeXp(—iot). Then we get an eigensystem with a spectral components base,

B¢ =6¢, (3-14)

whereB = D~*Aands =o/2m, andé’ represents a column vector f/2 components for
both even and odd modes. The eigensystem is solved by the use of Mathematica [3!
various resolutions. In Table Ill, the normalized error calculated for selected wavenum
is illustrated. We confirmed that only the filst modes are correct wheié, is given as

M/2—(Im| —2)/2 for evenm
M/2—(Im| —1)/2 for oddm.

Thus, we must take the zonal truncation to be not less than the meridional truncation,
N < M in the present model.
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TABLE Il
Normalized Error of Eigenvalues for Zonal Wavenumbers 3, 4, and 16

=}

m= 23 (odd) m=23 (even) m=4 (odd) m=4 (even) m=16 (odd) m=16 (even)

1 —0.18E-14 0.41E-15 —0.55E-15 0.45E-14 0.23E-15 —0.53E-15
2 —0.20E-15 —0.26E-14 0.29E-15 0.36E-14 —0.29E-15 0.82E-15
3 —0.77E-15 0.19E-14 0.62E-15 0.15E-15 —0.72E-15 —0.26E-14
4 0.18E-14 —0.19E-15 0.40E-14 —0.11E-15 —0.15E-14 0.35E-15
5 —0.80E-15 0.10E-14 0.13E-15 0.20E-14 —0.13E-14 0.28E-15
6 —0.31E-15 0.72E-15 0.72E-15 0.00E+-00 —0.16E-14 —0.98E-15
7 —0.41E-15 0.58E-15 —0.10E-14 —0.13E-15 —0.70E-15 0.15E-14
8 0.10E-14 0.14E-14 0.22E-14 0.41E-14 0.00E-00 0.21E-15
9 0.23E-14 0.91E-15 0.54E-15 —0.16E-14 —0.45E-15 0.24E-15
10 0.60E-15 0.10E-14 0.30E-14 0.26E-14 0.93E-03 0.10E-02
11 —0.71E-15 —0.13E-14 0.52E-15 0.35E-14 0.21E-01 0.23E-01
12 0.15E-14 —0.24E-14 0.24E-14 0.13E-14 0.10E-00 0.11E-00
13 —0.32E-14 0.17E-14 0.17E-15 0.75E-15 0.27E+00 0.28E-00
14 0.75E-15 0.10E-14 —0.18E-14 0.21E-14 0.50E+-00 0.50E+-00
15 0.25E-15 0.68E-15 0.91E-15 0.85E-15 0.73E-00 0.74E-00
16 0.22E+00 0.22E+-00 0.45E-00 0.45E-00 0.92E+00 0.92E-00

Note.The left column denotes the mode number, and “odd” and “even” imply the symmetric and antisymmet
modes with respect to the equatorepresents theth mode of the eigensolution.

The detailed procedure for applying the spherical-harmonics filter to the vorticity fie
in the case of odd modes (hemispherically symmetric modes) is illustrated. We first sc
the linear system

Qa=¢
¢ ={tum Came - Incim} (3-15a,b,c)
a={a,a,....an_1}",

whereQ is an N/2 x N/2 matrix consisting of the eigenvectors. Afi@iis obtained, it

is madea, =0 for the lastNg solutions. Then filtered coefficients for the vorticity are
calculated with the operation of the left-hand side of (3-15a). It should be remembered
the filtering actually selects the wave components relevant to the triangular truncation
the spherical-harmonics-based spectral model.

The number of operations required to apply the spherical-harmonics filter once is
proximately.M N? (LU decomposition of) is done only once), which is much larger than
that needed for the evaluation of nonlinear te@@\? log, J).! So, to keep the advantage
coming from the FFT unharmed by the application of the spherical-harmonics filter, it
desirable to use it less frequently than evérgM/ log, J) time steps. This corresponds to
one application every several tens of time steps even for very high resolutiohe=gh12.

As will be shown later, such less frequent use proves to be sufficient for the preventior
numerical instability. Moreover, stability is not so sensitive to the small change in frequen

1 Since the advantage of the double Fourier series model lies in the significant enhancement of efficienc:
the meridional transform, the operation counts should be compard for the meridional direction.
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3.4. Tests with Rossby—Haurwitz Waves

In this section, we use the rotated, stable Rossby—Haurwitz wave [13] for tests.
Coriolis parameter and the initial relative vorticity are given as

f(\, 6" = 2sing’
c()',0") = 2rsing’ +rn(n+ 1) cos 6’ sing’ cos 4./, (3-16a,b,c)
r=2/{n(n+1) — 2}

wheren=m+ 1 withm=4. A’ andd’ are defined as

sing’ = Ryzsin(y + a)
, cosd sini
B = Recosy + @)
Xz WY T (3-17a,b,c,d)
Ry, = (coS 6 cos A + sir? 6)Y/?

I_<tan6’ )
y = arctan —— |,
COSA

with 6 being the latitude and representing the rotation angle of the earth axis. Th
corresponds to a stationary Rossby—Haurwitz wavepfn) = (5, 4) mode superimposed
on the basic flow of superrotation (the first term on the right-hand side of (3-16by. A
increases tar/2, the flow over the poles becomes strongerery close tar/2 will be the
most severe test because it contains the asymmetry between the east and west hemis
The stream function and obtained from (3-16b) with the rotation angte= /2 — 0.05
are illustrated in Fig. 2. The error estimates are
[ —un)?+ @ —vp)? "

L, =
2 65+ 23]

i (3-18a,b)
max{ (u — ur)? + (v — v)?}”

T max{u2 + v2}"? ’

where the square brackets denote the global averaged v are thevelocities on grid

FIG. 2. Initial fields of stream function (left) and-velocity (right) with contour interval of 10m? s™* and
10 m s, respectively, in the case af=7/2 — 0.05. Positive (negative) values are in solid (dashed) lines, ar
latitudinal circles and meridians are drawn every.30nly the northern hemisphere is shown.
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90E

FIG. 3. Fields of stream function (left) angvelocity (right) at 64.5 h witle = 7 /2 — 0.05. The initial basic
flow is reduced to 0.9 of that in Fig. 2. The contour interval is the same as that in Fig. 1.

points, whileut andvt are the reference velocity fields which are related with (3-16b
We integrated the vorticity equation with a leapfrog time scheme for 14 days, which
the time required for the (5, 4) mode of the Rossby—Haurwitz wave to have one evolut
without basic flow. One time step is taken as 540, 270, and 135 s for M16, M32, and Mi
respectively.

To help understand the error growth with the basic flow slightly deviated from the s
tionary condition (3-16b), we first calculated the time evolution of (3-1) when the basic flc
of superrotation is reduced to 0.9 of that in (3-16b). Figure 3 shows the stream function
zonal velocity witha = /2 — 0.05 at 64.5 h, at which time the errbp, reaches 0.4. It is
apparent that due to the weak basic flow the Rossby—Haurwitz wave travels in the direc
opposite to that of the basic flow.

Figure 4 shows the error growth for M32, where the spherical-harmonics filter is us
every Je time steps. Although the errdr, grows with time exponentially, it remains
0(10719-0(1071?) at day 14. The errors are almost the same Joe= 30 and 40 but
increased by nearly 2 orders fdr=50. The erroi_3 shows a similar time variation to,
but has a nearly 11 order smaller magnitude tharat early stages. However, it can be
seen that the difference betwelepandL ; decreases sharply with time fas =50 beyond
4 days.
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FIG. 4. Time variation of logo L, (in dashed lines) and lggL ; (in solid lines) fore = /2 — 0.05 and M32.
The spherical-harmonics filter is applied evégtime steps.
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FIG.5. Time variation of log, L, for M32 (dashed line) and T32 (solid line) with= 7z /2 — 0.05 andJ. = 30.

As might be expected, the errbg increases with the rotation angle willfixed, which
was 036 x 10712 and 065 x 1012 for « =0 anda = /4, respectively(0.23 x 10~ for
a=m/2—0.05in Fig. 4), in the case af, = 30.

The quality of the results is tested by comparing them with those of the spheri
harmonics model [10, 19] of the same resolution, T32 having the total grid points
K x J=128x 65. For this resolution the maximum normality error of the Legendre fun
tions is 23 x 1071* (cf. Jacobet al. [15]). One time step is taken as the same for M3:
270 s. The same Fourier filter as in (3-13) was used at every time step, too. We corr
in Fig. 5 the errotL, of M32 with Jo =30 and T32. This shows that the result of M32 i
more accurate than that of T32 by aboétdrders. Time variations of the errors for the twc
models are very similar. Both models exhibit an exponential error growth and the gro
rate slightly increases after day 6 or so.

Figure 6 shows the effect of the model resolution, where the spherical-harmonics f
is used every 10, 30, and 60 time steps for M16, M32, and M64. At earlier stages the ¢
increases as the model resolution becomes better, while this is reversed at later stag
day 14, the error for M16 is about one order larger than that for M64.

—DS: C
1 ——M16 (Je=10) s
01 —M32 (Je=30) g
] ——MBU (Je=50) :
]S_Eﬁ/;
_20:l|||||||ll|l||||||||l||||l|ll|||||||II||II|II|I|IIIIIII:

00 02 O4 D06 08 10 12 11U
time (unit=day)

FIG.6. Time variation of log, L, with & = 7r/2 — 0.05 for various resolutions. The spherical-harmonics filtel
is applied every. time steps.
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FIG. 7. Same as in Fig. 6 except that the spherical-harmonics filter is not applied.

In Fig. 7 we present the error growth when the spherical-harmonics filter is not usec
is noted that the error grows with time with a much larger growth rate than the cases wt
the spherical-harmonics filter is used. As the resolution becomes large, the growth rate
becomes large. For M64, the error reacl®d) at day 12 and the model encounters ar
overflow around day 13.

3.5. Tests on the Advection of Cosine Bell

In this section, we present the test with the advection of a scalar field, which is conser
following the motion. The equations used are the vorticity equation (3-1) and the advect
equation

ah U oh V odh

—_—=———— — (3-19)

ot Sifg 91 sing d¢
whereh may be any scalar field. For a direct comparison with other results [15, 2B]bket
the geopotential height field scaled gya$2?, with g being the gravitational acceleration.
The advective flow field of rigid rotation at=0 is given as

LV, 0") =sing’/6 (3-20)

and is time-integrated by (3-1). The maximum flow speed is about 40 m/s, which gives
rotation of the scalar field during 12 days. The initial height field is given as the cosine-t
pattern [29], with its maximum value being 1000 geopotential meters in dimensional un

Figure 8 shows the height field at various time stages and error fields after one rotatior
a=m/2—0.05and M32. Atday 12, the field of true solution is drawn in solid lines over th
calculated pattern (dashed lines). Two contour lines are almost exactly overlapped so thz
cannot visibly distinguish one from the other. The error field, having about 1% fluctuatic
exhibits a nearly circular structure with the alternating sign, with greater amplitude over
cosine bell than over the outside region, which is common to other numerical method:
in [15, 28]. Not shown here is the fact that the amplitude of the error fluctuation is reduc
to 0.24% at day 12 for M64.



DOUBLE FOURIER SERIES ON A SPHERE 345

FROM 100 TO 900 BY 100 MAX=5.8,MIN=-10.6,CI=2.5

FIG. 8. (Left) Height field at days 1.5, 10.5, and 12 with=m/2— 0.05. For day 12 the fields of exact
solution (solid line) and calculation (dashed line) overlap. (Right) Height field error after one rotation (12 da

Figure 9 shows the time variation of the normalized errors of hourly samplds,, and
L3, defined as

[lh—hr]
P L
YT il
_ 211/2
L, = % (3-21a,b,c)
2
_ max(h — hr)|
°7 " maxhr]|

whereht denotes the true solution and the square bracket again means the global ave
It is shown that the growth rate and magnitude of the error are very similar to one anc
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FIG. 9. Height error growth with time.
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fora =7/2—0.05, 7/4, and 0. No significant signal of passing over the poles is seen fro
the error variation with time, which implies the absence of the so-called pole problem
is of interest to note that the errtip decreases with time for M32 while it increases for
M64. As in [15, 28], the curves are oscillating with time, reflecting the sampling errors «
grid-point values.

Although precise comparison of the results with other methods is difficult because
different time-step sizes and resolutions, we give some comparisons for selected m
parameters. For convenience, we compare our results for M32 to those of T42 for
spherical-harmonics model and 416 x 16 for the spectral element model (for simplicity,
referred to as SEM). The grid points of M32 and T42 are 8192, and SEM has 6144 ¢
points, while the time step sizes are 270, 1200, and 90 s, respectiveli.,Ereors at day
12 are 0.015, 0.04, and 0.02, where the rotation amggegaken asr /2 — 0.05 for M32 and
T42 andrr /2 for SEM (the difference ie does not produce a significant change in errors)
The error-growth rates (obtained by approximating the curves as a linear behavigr) of
for M32 and SEM are similar to each other, whilg error for T42 is at least five times
larger than M32 and SEM due to large time step size [15].

4. DISCUSSION AND CONCLUSIONS

A new method for the solution of simple elliptic equations on a sphere by approximati
the functions using truncated double Fourier series was presented with application
the time-dependent nonlinear vorticity equation and advection equation. In addition to
advantages provided by Boer and Steinberg [2] and Yee [32], the present method gives a|
definite and accurate formula because the constraint imposed on the spectral coeffic
is not necessary, which can lead to increased accuracy and stability in a time-step
procedure.

The solution of the Poisson equation was found to be more accurate than that by Y
method for the even zonal wavenumbers other than zero, which comes from the us
basis functions satisfying the pole condition as in (2-5). The accuracy remains almr
unchanged from Yee’s [32] for odd zonal wavenumbers because the same basis func
are used, implying that taking the interior grids does not affect the accuracy for this proble
However, the difference in accuracy for zonal wavenumber zero still exists in spite
adopting the same basis functions when high resolution is used. If a function used for
test includes both even and odd zonal wavenumbers, the accuracy appears to be unch
from Yee’s because the improved accuracy for even zonal wavenumbers will be maske
odd zonal wavenumbers. It was shown that the error for the solution of biharmonic-ty
elliptic equations increases as the relative importance of the fourth order term increases.
accuracy drops by more than two orders compared to the Poisson equation when the rel
magnitude of the fourth order term is one order larger than that of the second order ter

Through tests with the Rossby—Haurwitz wave of (5, 4) mode, which is stable [13],
was found that the new method can be applied successfully to the vorticity equation v
high accuracy provided that the spherical-harmonics filter is used appropriately. The e
measure defined in Eq. (3-18a) remains in the range foad0-1*) for M16 to O(10-1?)
for M64. To give a direct comparison with the reference solution, we time integrated t
vorticity equation with the spherical-harmonics model using the same resolution (i.e., T.
and time-step size. The result showed that the present method is more accurate tha
spherical-harmonics model by a factor of abognmr the test used here.
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Numerical integration without the spherical-harmonics filter was found to produce la
errors compared to the results stated above. In particular, for M64 the error gr@&)to
around day 12. The cure for this must be the spherical-harmonics filter, as was implied al
However, too frequent use of it deteriorates the efficiency coming from the use of do
FFT. We confirmed that sufficiently less frequent use of it to keep the advantage of |
works for test cases. Along with the advantage of double FFT, the present model can re
the zonal grids near poles as in the spherical-harmonics model [12], while the shortcor
remains unavoidable that large storage is needed for the spherical-harmonics filter, v
is comparable to that needed for the Legendre functions in the spherical-harmonics m

Further application to the advection equation was carried out with one of the stan
test method in [29]. Error measures for the strong advection of cosine bell with vari
rotation angles indicated that the present method is capable of producing accurate
stable calculations without the pole problem.

Test results as shown in Section 3 suggest that the double Fourier series used i
study could be applied to the numerical weather prediction model including shallow w:
equations without difficulty. We will present the test results with the standard test
proposed by [29] in the future.

APPENDIX

The vorticity equation in flux form is written as

I 1 9 1 i
ﬁ__—sin%ﬁ(un)_W%( n), (A-1)

with the definitions as in Section 3. L&t (¢, t) andym(¢, t) be the zonal Fourier trans-
forms of U /sir? ¢ andV 5, respectively. Evaluation of the longitudinal advection term i
straightforward. Then, m) component of latitudinal advection term for oehds calculated
as

-1 (7sinng [ 9
= | Lageos

7 Jo sing
-1 /" [n cosng sinng cos¢
0 sing Sir? ¢

do

T

_ -1 /n Y [ = Dsin(h + D¢ — (n+ Dy sinn — D@l dg.  (A-2)
T Jo 2sirf¢

A similar expression fom =0 may be obtained with ease. For evaii£0),

-1 (7"sinng [ a
7 Jo Sin2¢ [M’ym} a9
;1 [ncosngb 3 2 sinng cosg do
N 0 y sirt ¢ sin’ ¢

/ 2 s,|r1'5(/)[(n —2)sin(n+ 1)¢ — (n+2)sin(n — Dp]dg.  (A-3)
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Thus the spectral form of the vorticity equation is written as

g{ _ —i mxn,m + {(n - 2)Yn+1,m - (n + 2)Yn—1,m}/2 for evenm (7&0)
de>™™ —imXym+ {0 = DYni1m— (N+DYn_1.m}/2 foroddmandm =0
%ELO = —2Yp,0, (A-4a,b,c)

whereX, m andY, n are the meridional transforms &§,(¢, t) andYn(¢) = Ym (¢)/sir? ¢,
respectively. Truncation foY,, » should be taken one level above thatgfn,, andY_;
is discarded. In the derivation of spectral form for the latitudinal advection term, we us
the fact thatv /sir? ¢ must be bounded at poles.

Since from (A-1) the global integral of the vorticity is conserved with time, the spectr
equations (A-4) should also satisfy this conservation property. Using Eg. (3-10),

d d <~ Zno
a[“—a;l_nz

n=
even

N
1 1 1
=—Yi0+5 Z_; 2= D¥ni10— N+ DY 10}

even
1
N+1,05 (A-5)

- Y
2(N+1)

thus we must discardy 1,0 to meet the vorticity conservation in the absence of forcing an
dissipation. Time integration with (A-4) showed that the error for Rossby—Haurwitz wav
tested is larger than that resulting from the time integration with (3-8) by n&x1g®).

ACKNOWLEDGMENTS

The author acknowledges the financial support of the Korea Research Foundation made in the program
1997. He also thanks the anonymous reviewers for their constructive comments. He thanks members ¢
atmospheric modeling laboratory in Pukyong National University, D.-K. Shin, Y.-C. Song, M.-K. Kang, and T.-
Goo, for their support and helpful discussions.

REFERENCES

1. S. R. M. Barros, Multigrid methods for two- and three-dimensional Poisson-type equations on the sph
J. Comput. Phy92, 313 (1991).

. G.J. Boer and L. Steinberg, Fourier series on sphétesmspherd 3, 180 (1975).
. W. Bourke, An efficient, one-level, primitive-equation spectral mddeln. Weather Re\L00, 683 (1972).

A W N

. J. P. Boyd, The choice of spectral functions on a sphere for boundary and eigenvalue problems: A compa
of Chebyshev, Fourier and associated Legendre expansiams, Weather Rex.06, 1184 (1978).

5. J. P. Boyd, Chebyshev and Fourier spectral methods, in Lecture Notes in Engineering, edited by C. A. Bre
and S. A. Orszag (Springer-Verlag, New York, 1989).

6. S. C. Dennis and L. Quartapelle, Spectral algorithms for vector elliptic equations in a spherical g
J. Comput. Phys1, 218 (1985).

7. G. A. Dilts, Computation of spherical harmonic expansion coefficients via FETGomput. Physs7, 439

(1985).



11.
12.

13.
14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.
31.
32.

DOUBLE FOURIER SERIES ON A SPHERE 349

. M. Elowitz, F. Hill, and T. L. Duvall, A test of a modified algorithm for computing spherical harmoni

expansion coefficients using an FETComput. Phys80, 506 (1989).

. W. L. Gates, The atmospheric model intercomparison prdjedt, Amer. Meteor. Sod.3, 1962 (1992).
10.

G. J. Haltiner and R. T. WilliamsNumerical Weather Prediction and Dynamic Meteorolagyiley,
New York, 1980), 2nd ed.

B. Haurwitz, The motion of atmospheric disturbances on the spherical &avthy. Res. 1113, 255 (1940).

M. Hortal and A. J. Simmons, Use of reduced Gaussian grids in spectral middels\Weather, Re\1 19,
1057 (1991).

D. J. Hoskins, Stability of the Rossby—Haurwitz we@eart. J. Roy. Meteor. S089, 723 (1973).

D. J. Hoskins and A. J. Simmons, A multi-layer spectral model and the semi-implicit m&bad, J. Roy.
Meteor. Soc101, 637 (1975).

R. Jacob, J. Hack, and D. L. Williamson, Spectral transform solutions to the shallow water test
J. Comput. Physl19, 164 (1995).

M. N. Jukes and M. E. Mcintyre, A high-resolution one-layer model of breaking planetary waves in
stratospherd\ature328 590 (1987).

P. E. Merilees, The pseudospectral approximation applied to the shallow water equations on a sj
Atmospherd 1, 13 (1973).

S. Moorthi and R. Y. Higgins, Application of Fast Fourier Transform to the direct solution of a class
two-dimensional separable elliptic equations on the spivdoa, Weather RewL21, 290 (1993).

T. Nehrkorn, On the computation of Legendre functions in spectral mddels, Weather Re\118 2248
(1990).

S. A. Orszag, Transform method for the calculation of vector-coupled sums: Application to the spectral
of the vorticity equationJ. Atmos. Sci27, 890 (1970).

S. A. Orszag, Fourier series on sphekésn. Weather Re02 56 (1974).
W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flaniéuynerical Recipe€Cambridge Univ. Press,
Cambridge, UK, 1992).

A. J. Robert, The integration of a low order spectral form of the primitive meteorological equatic
J. Meteor. Soc. Jpri4, 237 (1966).

W. F. Spotz, M. A. Taylor, and P. N. Swartztrauber, Fast shallow-water equations solvers in latitude-long
coordinates). Comput. Physl45 432 (1998).

P. N. Swartztrauber, The direct solution of the discrete Poisson equation on the surface of a sy
J. Comput. Physl5, 46 (1974).

P. N. Swartztrauber, On the spectral approximation of discrete scalar and vector functions on the sj
SIAM J. Numer. Anall6, 934 (1979).

P. N. Swartztrauber, Spectral transform methods for solving the shallow-water equations on the sy
Mon. Weather Re\L24, 730 (1996).

M. Taylor, J. Tribbia, and M. Iskandarani. The spectral element method for the shallow water equatior
the sphere). Comput. Physl30, 92 (1997).

D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swartztrauber, A standard test set for num
approximations to the shallow water equations in spherical geonde®gmput. Physl02, 211 (1992).

S. WolframMathematicaWolfram Research, Champaign, IL, 1988).
S. Y. K. Yee, Studies on Fourier series on sphavies). Weather Re\L08 676 (1980).

S. Y. K. Yee, Solution of Poisson’s equation on a sphere by truncated double FourierMerie®yeather
Rev.109 501 (1981).



	1. INTRODUCTION
	2. POISSON EQUATION ON A SPHERE
	FIG. 1.
	TABLE I

	3. VORTICITY EQUATION AND SPECTRAL REPRESENTATION
	TABLE II
	TABLE III
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.

	4. DISCUSSION AND CONCLUSIONS
	APPENDIX
	ACKNOWLEDGMENTS
	REFERENCES

